Немного о компьютере

Импульсная характеристика цепи. Расчет переходной и импульсной характеристик цепи Временной метод анализа переходных процессов в линейных электрических цепях

  • 5. Вторичные (характеристические) параметры четырехполюсников согласованный режим четырехполюсника.
  • 6. Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока.
  • 7. Максимальное, среднее и действующее значения несинусоидального тока.
  • 8. Резонанс в цепи несинусоидального тока.
  • 9. Мощность цепи несинусоидального тока.
  • 10. Высшие гармоники в трехфазных цепях. Простейший утроитель частоты.
  • 11. Возникновение переходных процессов в линейных цепях. Законы коммутации.
  • 12. Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия.
  • Классический метод расчёта переходных процессов
  • 13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.
  • 14. Периодический заряд конденсатора. Собственная частота колебаний контура. Критическое сопротивление.
  • 15. "Некорректные" начальные условия. Особенности расчета. Существуют ли в реальных схемах такие условия?
  • 16. 0Пределение корней характеристического уравнения. Обосновать.
  • 17.Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля.
  • Последовательность расчета с использованием интеграла Дюамеля
  • Переходная и импульсная характеристики
  • 19. Применение преобразований Лапласа к расчету переходных процессов. Основные свойства Лапласовых функций.
  • 20.Операторные схемы замещения. Обосновать.
  • 21.Расчет переходных процессов методом переменных состояния. Формирование расчетных уравнений. Расчет с помощью эвм.
  • 22.Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов.
  • 23.Расчет частотных характеристик цепи. Определение переходной характеристики по вещественной частотной.
  • 24. Особенности применения частотного метода расчета при изучении прохождения сигнала через четырехполюсник.
  • 25.Уравнения длинной линии в частных производных. Первичные параметры длинной линии.
  • 26. Решение уравнений длинной линии при синусоидальном напряжении. Вторичные параметры длинной линии.
  • 27. Волновые процессы в длинной линии. Падающая и отраженная волны. Коэффициент отражения. Входное сопротивление.
  • Дифференциальные уравнения длинной линии
  • Погонные параметры
  • Коэффициенты бегущей и стоячей волны
  • 28.Линия без потерь. Стоячие волны.
  • 29. Входные сопротивления линии без потерь. Имитация индуктивностей и емкостей.
  • 31. Волновые процессы в линии без потерь, нагруженной на активное сопротивление. Коэффициенты стоячей и бегущей волны.
  • 32. Особенности вольт-амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам.
  • 33. Расчет схем стабилизации напряжений и токов, определение коэффициента стабилизации по линейной схеме замещения.
  • 34. Аппроксимация нелинейных характеристик. Аналитический метод расчета.
  • 35. Особенности периодических процессов в электрических цепях с инерционными элементами.
  • 36. Спектральный состав тока в цепи с нелинейным резистором при воздействии синусоидального напряжения. Комбинационные колебания.
  • 37. Метод эквивалентных синусоид. Методы расчета нелинейных цепей по действующим значениям. Метод эквивалентной синусоиды.
  • Метод расчета нелинейных цепей переменного тока по эквивалентным действующим значениям
  • 38. Форма кривых тока, магнитного потока и напряжения в нелинейной идеальной катушке. Схема замещения, векторная диаграмма.
  • Расчет тока катушки со сталью с учетом потерь в сердечнике
  • 40. Феррорезонанс напряжений. Триггерный эффект.
  • 42. Основы метода гармонического баланса. Приведите пример.
  • 43. Метод кусочно-линейной аппроксимации характеристик нелинейных элементов. Расчет цепей с вентилями. Схема однополупериодного и двухполупериодного выпрямителя.
  • Цепи с вентильными сопротивлениями
  • 44. Расчет схемы однополупериодного выпрямителя с емкостью.
  • 18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.

    Единичная ступенчатая функция (функция включения) 1 (t) определяется следующим образом:

    График функции 1 (t) показан на рис. 2.1.

    Функция 1 (t) равна нулю при всех отрицательных значениях аргумента и единице при t ³ 0 . Введем в рассмотрение также смещенную единичную ступенчатую функцию

    Такое воздействие включается в момент времени t = t ..

    Напряжение в виде единичной ступенчатой функции на входе цепи будет при подключении источника постоянного напряжения U 0 =1 В при t = 0 с помощью идеального ключа (рис. 2.3).

    Единичная импульсная функция (d - функция, функция Дирака) определяется как производная от единичной ступенчатой функции. Поскольку в момент времени t = 0 функция 1 (t ) претерпевает разрыв, то ее производная не существует (обращается в бесконечность). Таким образом, единичная импульсная функция

    Это особая функция или математическая абстракция, но ее широко используют при анализе электрических и других физических объектов. Подобного рода функции рассматриваются в математической теории обобщенных функций.

    Воздействие в виде единичной импульсной функции можно рассматривать как ударное воздействие (достаточно большая амплитуда и бесконечно малое время воздействия). Вводится также единичная импульсная функция, смещенная на время t = t

    Единичную импульсную функцию принято графически изображать в виде вертикальной стрелки при t = 0, а смещенную при - t = t (рис. 2.4).

    Если взять интеграл от единичной импульсной функции, т.е. определить площадь, ограниченную ею, то получим следующий результат:

    Рис. 2.4.

    Очевидно, что интервал интегрирования может быть любым, лишь бы туда попала точка t = 0. Интеграл от смещенной единичной импульсной функции d (t-t ) также равен 1 (если в пределы интегрирования попадает точка t = t). Если взять интеграл от единичной импульсной функции умноженной на некоторый коэффициент А 0 , то очевидно результат интегрирования будет равен этому коэффициенту. Следовательно, коэффициент А 0 перед d (t ) определяет площадь, ограниченную функцией А 0 d (t ).

    Для физической интерпретации d - функции целесообразно ее рассматривать как предел, к которому стремиться некоторая последовательность обычных функции, например

    Переходная и импульсная характеристики

    Переходной характеристикой h(t) называется реакция цепи на воздействие в виде единичной ступенчатой функции 1 (t ). Импульсной характеристикой g(t) называется реакция цепи на воздействие в виде единичной импульсной функции d (t ). Обе характеристики определяются при нулевых начальных условиях.

    Переходная и импульсная функции характеризуют цепь в переходном режиме, так как они являются реакциями на скачкообразные, т.е. довольно тяжелые для любой системы воздействия. Кроме того, как будет показано ниже с помощью переходной и импульсной характеристик может быть определена реакция цепи на произвольное воздействие. Переходная и импульсная характеристики связаны между собой также как связаны между собой соответствующие воздействия. Единичная импульсная функция является производной от единичной ступенчатой функции (см. (2.2)), поэтому импульсная характеристика является производной от переходной характеристики и при h (0) = 0 . (2.3)

    Это утверждение следует из общих свойств линейных систем, которые описываются линейными дифференциальными уравнениями, в частности, если к линейной цепи с нулевыми начальными условиями вместо воздействия прикладывается его производная, то реакция будет равна производной от исходной реакции.

    Из двух рассматриваемых характеристик наиболее просто определяется переходная, так как она может быть вычислена по реакции цепи на включение на входе источника постоянного напряжения или тока. Если такая реакция известна, то для получения h(t) достаточно разделить ее на амплитуду входного постоянного воздействия. Отсюда следует, что переходная (также как и импульсная) характеристика может иметь размерность сопротивления, проводимости или быть безразмерной величиной в зависимости от размерности воздействия и реакции.

    Пример . Определить переходную h(t) и импульсную g (t ) характеристики последовательной RC-цепи.

    Воздействием является входное напряжение u 1 (t ), а реакцией - напряжение на емкости u 2 (t ). Согласно определению переходной характеристики ее следует определять как напряжение на выходе, когда на вход цепи подключается источник постоянного напряжения U 0

    Такая задача была решена в разделе 1.6, где получено u 2 (t ) = u C (t ) = Таким образом,h(t) = u 2 (t ) / U 0 = Импульсную характеристику определим по (2.3).

    Интеграл Дюамеля.

    Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

    При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

    Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

    В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

    В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

    Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

    Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

    . (1)

    Соотношение (1) называется интегралом Дюамеля.

    Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.


    Последовательность расчета с использованием
    интеграла Дюамеля

    В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

    Исходные данные для расчета: , , .

    1. Переходная проводимость

    .


    18. Передаточная функция .

    Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

    Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

    и

    Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

    Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

    Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала - символическому умножению оригинала на p - при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

    Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

    Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=U ВЫХ /U ВХ


    Интеграл Фурье.

    Функция f (x ), определенная на всей числовой оси называется периодической , если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

    Отметим некоторые с в о й с т в а этой функции:

    1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т .

    2) Если функция f (x ) период Т , то функция f (ax )имеет период .

    3) Если f (x )- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

    Тригонометрический ряд. Ряд Фурье

    Если f (x ) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:(1)

    То это разложение единственное и коэффициенты определяются по формулам:

    где n =1,2, . . .

    Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье .

    Комплексная форма ряда Фурье

    Выражение называется комплексной формой ряда Фурье функции f (x ), если определяется равенством

    , где

    Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

    (n =1,2, . . .)

    Интегралом Фурье функции f(x) называется интеграл вида:

    , где .


    Частотные функции.

    Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

    то после завершения переходного процесса на выходе установится гармонические колебания

    с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом .

    Подставим выражения для u(t) и y(t) в уравнение динамики

    (aоp n + a 1 pn - 1 + a 2 p n - 2 + ... + a n)y = (bоp m + b 1 p m-1 + ... + b m)u.

    Учтем, что

    pnu = pnU m ejwt = U m (jw)nejwt = (jw)nu.

    Аналогичные соотношения можно записать и для левой части уравнения. Получим:

    По аналогии с передаточной функцией можно записать:

    W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией . Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

    W(j ) есть комплексная функция, поэтому:

    где P() - вещественная ЧХ (ВЧХ) ; Q() - мнимая ЧХ (МЧХ) ; А() - амплитудная ЧХ (АЧХ) : () - фазовая ЧХ (ФЧХ) . АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

    ;

    Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

    Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.

    В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

    Они получаются путем логарифмирования передаточной функции:

    ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах .

    Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

    lg(P 2 /P 1) = lg(A 2 2 /A 1 2) = 20lg(A 2 /A 1).

    По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой . Так как lg(0) = - , то ось ординат проводят произвольно.

    ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

    ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


    Обратные связи.

    Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

    Передаточная функция замкнутой цепи с отрицательной обратной связью - звена, охваченного отрицательной обратной связью,- равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

    Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


    22. 23. Четырёхполюсники .

    При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

    Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

    Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

    В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

    Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

    В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

    Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

    Таблица 1. Формы записи уравнений пассивного четырехполюсника

    Форма Уравнения Связь с коэффициентами основных уравнений
    А-форма ; ;
    Y-форма ; ; ; ; ; ;
    Z-форма ; ; ; ; ; ;
    Н-форма ; ; ; ; ; ;
    G-форма ; ; ; ; ; ;
    B-форма ; . ; ; ; .

    Характеристическое сопротивление и коэффициент
    распространения симметричного четырехполюсника

    В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

    .

    Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

    ,

    Академия России

    Кафедра Физики

    Лекция

    Переходные и импульсные характеристики электрических цепей

    Орел 2009

    Учебные и воспитательные цели:

    Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

    Распределение времени лекции

    Вступительная часть……………………………………………………5 мин.

    Учебные вопросы:

    1. Переходные характеристики электрических цепей………………15 мин.

    2. Интегралы Дюамеля………………………………………………...25 мин.

    3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

    4. Интегралы свертки………………………………………………….15 мин.

    Заключение……………………………………………………………5 мин.


    1. Переходные характеристики электрических цепей

    Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

    Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

    Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

    По определению ,

    – реакция цепи на ступенчатое воздействие; – величина ступенчатого воздействия [В] или [А]. и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

    Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

    Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

    Отношение преобразованной по Лапласу реакции цепи к величине воздействия

    представляет собой операторную переходную характеристику цепи:

    Следовательно .

    Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

    Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

    ,

    воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

    Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной

    -цепи (рис. 1):

    Здесь реакция на ступенчатое воздействие величиной

    :

    откуда переходная характеристика:

    Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


    2. Интегралы Дюамеля

    Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

    Условимся, что воздействие

    является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

    Заданное воздействие

    можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

    Найдем значение реакции цепи в некоторый момент времени

    .

    Ступенчатое воздействие с перепадом

    к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

    Бесконечно малое же ступенчатое воздействие с перепадом

    , обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

    В соответствии с принципом наложения реакции

    будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

    Обычно в последней формуле

    заменяют просто на , поскольку найденная формула верна при любых значениях времени :

    Министерство образования и науки Украины

    Донецкий Национальный Университет

    Доклад

    на тему: Радиотехнические цепи и сигналы

    Студента 3 курса дневного отделения НФ-3

    Разработал студент:

    Александрович С. В.

    Проверил преподаватель:

    Долбещенков В. В.

    ВВЕДЕНИЕ

    "Радиотехнические цепи и сигналы" (РТЦ и С) – курс, являющийся продолжением курса "Основы теории цепей". Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях. Излагаемые в курсе "РТЦ и С" методы анализа сигналов и радиотехнических цепей используют математические и физические сведения, в основном известные студентам из предшествующих дисциплин. Важная задача курса "РТЦ и С" – научить студентов выбирать математический аппарат, адекватный встретившейся проблеме, показать, как работает этот аппарат при решении конкретных задач в области радиотехники. Не менее важно научить студентов видеть тесную связь математического описания с физической стороной рассматриваемого явления, уметь составлять математические модели изучаемых процессов.

    Основные разделы, изучаемые в курсе "Радиотехнические цепи и сигналы":

    1. Временной анализ цепей на основе свертки;

    2. Спектральный анализ сигналов;

    3. Радиосигналы с амплитудной, угловой модуляцией;

    4. Корреляционный анализ сигналов;

    5. Активные линейные цепи;

    6. Анализ прохождения сигналов через узкополосные цепи;

    7. Отрицательная обратная связь в линейных цепях;

    8. Синтез фильтров;

    9. Нелинейные цепи и методы их анализа;

    10. Цепи с переменными параметрами;

    11. Принципы генерирования гармонических колебаний;

    12. Принципы обработки сигналов дискретного времени;

    13. Случайные сигналы;

    14. Анализ прохождения случайных сигналов через линейные цепи;

    15. Анализ прохождения случайных сигналов через нелинейные цепи;

    16. Оптимальная фильтрация детерминированных сигналов в шумах;

    17. Оптимальная фильтрация случайных сигналов;

    18. Численные методы расчета линейных цепей.

    ВРЕМЕННОЙ АНАЛИЗ ЦЕПЕЙ НА ОСНОВЕ СВЕРТКИ

    Переходная и импульсная характеристика

    В основе временного метода лежит понятие переходной и им­пульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции. Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воз­действие единичной импульсной функции (d-функции). Обо­значается импульсная характеристика h (t ). Причем, g (t ) и h (t )определяются при нулевых начальных условиях в цепи. В зави­симости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмер­ными величинами, либо имеют размерность А/В или В/А.


    Использование понятий переходной и импульсной характери­стик цепи позволяет свести расчет реакции цепи от действия непе­риодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульс­ной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи нахо­дится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).

    Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций вели­чины 1/t, сдвинутых друг относительно друга на время t:

    т. е. единичная импульсная функция рав­на производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение сохраня­ется и для импульсных и переходных реак­ций цепи

    т. е. импульсная характеристика является производной от переход­ной характеристики цепи.

    Уравнение справедливо для случая, когда g (0) = 0 (нуле­вые начальные условия для цепи). Если же g (0) ¹ 0, то предста­вив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

    Для нахождения переходных и им­пуль­сных характеристик цепи можно использо­вать как классический, так и операторный методы. Сущность классического метода сос­то­ит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функ­ции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи или операторным мето­дом.

    Следует отметить, что величина I (р ) в уравнении численно равна изображению переходной проводимости. Аналогичное изо­бражение импульсной характеристики численно равно операторной проводимости цепи

    Например, для -цепи имеем:

    Применив к Y (p ) теорему разложения, получим:

    В табл. 1.1 сведены значения переходной и импульсных харак­теристик по току и напряжению для некоторых цепей первого и второго порядка.

    Похожие публикации